Journal of Chromatography, 124 (1976) 147-151

© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

CHROM. 9200

Note

Fatty acids

IX*. The thin-layer chromatographic behaviour of all of the cis, cis- and trans, trans-dimethylene-interrupted methyl octadecadienoates and methyl octadecadiynoates

M. S. F. LIE KEN JIE and C. H. LAM Chemistry Department, University of Hong Kong (Hong Kong) (Received March 12th, 1976)

Gunstone *et al.*² demonstrated the unique subfractionation behaviour of monoethylenic fatty esters according to the position of the double bond in the fatty ester chain by silver-ion thin-layer chromatography (TLC). This technique, since its first application to lipids³⁻⁵, has been extensively employed in the isolation of unsaturated⁶ and oxygenated⁷ fatty esters. We now report the 'TLC properties of the dimethyleneinterrupted *cis,ci* and *trans,trans*-methyl octadecadienoates and methyl octadecadiynoates on sili aregnated with silver nitrate.

EXPERIMENTAL

Silica (Nerck, Darmstadt, G.F.R.; GF 254 Type 60) was impregnated with silver nitrate (20 , w/w) and coated on glass plates (20 \times 20 cm) to give a uniform layer of 0.3-mm taickness. The plates were activated by heating at 110° for 1 h. Diethyl ether-light petroleum (b.p. 60-80°) (7:18, v/v) was used to develop the plates. Samples (20-30 μ g) dissolved in acetone (1 μ l) were spotted on to the plate by means of a microsyringe. After development, the spots were made visible by spraying with a 10% ethanolic solution of phosphomolybdic acid⁸ and heated in an oven at 150-200° for *ca*. 10 min or until the spots became visible.

RESULTS

Methyl octadecadiynoates

With the exception of the $\Delta^{2a,6a}$, $\Delta^{3a,7a}$ and $\Delta^{4a,8a}$ esters, the remainder of the methyl octadecadiynoate isomers formed a shallow sinusoidal curve with a minimum at the $\Delta^{6a,10a}$ isomer and a maximum at the $\Delta^{10a,14a}$ ester (Fig. 1). The R_F values of these isomers are presented in Table I. The $\Delta^{2a,6a}$ ester exhibited similar behaviour

* For Part VIII, see ref. 1.

Fig. 1. TLC of methyl octadecadiynoates. For details see Table I.

to a monounsaturated fatty ester and gave an R_F value identical to that observed for methyl oleate. The low extent of interaction of the unsaturated centre at the Δ^2 position with silver ions is probably due to its conjugation with the methoxycarbonyl group, where the π -electrons are delocalized. The $\Delta^{3a,7a}$ isomer decomposed during the process of development and produced a continuous streak on the plate. The $\Delta^{13a,17a}$ isomer formed a silver salt, due to the presence of a terminal triple bond, and thus remained at the origin after development.

Methyl cis, cis- and trans, trans-octadecadienoates

Both series of *cis,cis*- and *trans,trans*-isomers were run either separately (Figs. 2 and 3) or jointly in pairs of positional isomers (Fig. 4) on a single TLC plate. The R_F values of both series are recorded in Table I.

The cis, cis-compounds formed a distinct sinusoidal curve with a minimum at the $\Delta^{4c,8c}$, $\Delta^{5c,9c}$ and $\Delta^{6c,10c}$ isomers and a maximum at the $\Delta^{10c,14c}$ isomer. The $\Delta^{2c,6c}$ ester behaved very differently from the remaining isomers as its R_F value slightly

NOTES

TABLE I

 R_F VALUES OF METHYL OCTADECADIENOATES AND OCTADECADIYNOATES 18:2(*a*,*a*) = Methyl octadecadiynoates, 18:2(*c*,*c*) = methyl *cis*,*cis*-octadecadienoates and 18:2(*t*,*t*) = methyl *trans*,*trans*-octadecadienoates.

Isomer	R _F values				
	Fig. 1; 18:2(a,a)	Fig. 2; 18:2(c,c)	Fig. 3; 18:2(t,t)	Fig. 4	
				18:2(t,t)	18:2(c,c)
A ^{2,6}	0.63	0.76	0.78	0.74	0.74
⊿ ^{3,7}	_	0.42	0.64	0.65	0.45
∆ ^{4,8}	0.37	0.40	0.63	0.65	0.41
∆ ^{5,9}	0.39	0.40	0.64	0.66	0.42
∠1 ^{6.10}	0.36	0.40	0.64	0.66	0.45
∆ ^{7,11}	0.38	0.41	0.66	0.67	0.46
∠1 ^{8,12}	0.38	0.45	0.68	0.70	0.48
⊿ ^{9,13}	0.39	0.47	0.69	0.71	0.51
∆ ^{10,14}	0.41	0.48	0.67	0.73	0.53
∆ ^{11.15}	0.39	0.42	0,63	0.71	0.50
A12.15	0.33	0.42	0.62	0.70	0.48
A13.17	0.00	0.35*	0.40**	0.54**	0.43*
Methyl stearate	0.70	0.87	0.88	0.84	
Methyl oleate	0.63	0.75	-	0.78	
Methyl elaidate	_	0.83	0.84	0.80	

[■] A^{13e,17e} Isomer.

** 131.17e Isomer.

149

Fig. 3. TLC of methyl trans, trans-octadecadienoates. For details see Table I.

exceeded that of methyl oleate (Table I). The *trans,trans*-isomers gave a very shallow sinusoidal curve with a recognisable maximum at the $\Delta^{9t,13t}$ isomer. Like the corresponding *cis,cis*-isomer, the $\Delta^{2t,6t}$ compound gave a high R_F value. The R_F values of both series are recorded in Table I.

When pairs of the same positional isomers of the *cis,cis*- and *trans,trans*isomers were spotted on to the same TLC plate (Fig. 4), the separation of the *trans,trans*- from the *cis,cis*-isomers was well defined except for the $\Delta^{2,6}$ esters. On the whole the *trans,trans*-compounds were less polar than their corresponding *cis,cis*isomers.

ACKNOWLEDGEMENT

The authors thank the Committee on Higher Degrees and Research Grants of the Hong Kong University for financial support.

Fig. 4. TLC of methyl cis, cis-and trans, trans-octadecadienoates. For details see Table I.

REFERENCES

- 1 C. H. Lam and M. S. F. Lie Ken Jie, J. Chromatogr., 121 (1976) 303.
- 2 F. D. Gunstone, I. A. Ismail and M. S. F. Lie Ken Jie, Chem. Phys. Lipids, 1 (1967) 376.
- 3 B. de Vries, Chem. Ind. (London), (1962) 1049.
- 4 C. B. Barret, M. S. J. Dallas and F. B. Padley, Chem. Ind. (London), (1962) 1050.
- 5 L. J. Morris, Chem. Ind. (London), (1962) 1238.
- 6 K. Aitzetmüller, J. Chromatogr., 113 (1975) 231.
- 7 R. Kleiman, G. F. Spencer, L. W. Tjarks and F. R. Earle, Lipids, 6 (1971) 617.
- 8 E. Stahl, Thin Layer Chromatography, A Laboratory Handbook, Academic Press, New York, 1965, p. 498.